Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms

نویسندگان

  • Gregorio Iraola
  • Lucía Spangenberg
  • Bruno Lopes Bastos
  • Martín Graña
  • Larissa Vasconcelos
  • Áurea Almeida
  • Gonzalo Greif
  • Carlos Robello
  • Paula Ristow
  • Hugo Naya
چکیده

The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth in a member of the genus Leptospira. As many pathogenic species of this genus can survive inside the host but also persist in environmental water, mostly forming biofilms, identifying the molecular basis of this capacity can impact the understanding of how leptospires are able to fulfill a complete life cycle that alternates between adaptation to the host and adaptation to hostile external environmental conditions. We identified several genes and regulatory networks that can be the kickoff for deepening understanding of the molecular mechanisms involving bacterial persistence via biofilm formation; understanding this is important for the future development of tools for controlling leptospirosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp.

The spirochetes of the Leptospira genus contain saprophytic and pathogenic members, the latter being responsible for leptospirosis. Despite the recent sequencing of the genome of the pathogen L. interrogans, the slow growth of these bacteria, their virulence in humans, and a lack of genetic tools make it difficult to work with these pathogens. In contrast, the development of numerous genetic to...

متن کامل

Transcriptome analysis of the freshwater pearl mussel, Hyriopsis cumingii (Lea) using illumina paired-end sequencing to identify genes and markers

The transcriptome of triangle sail mussel Hyriopsis cumingii (Lea) using Illumina paired-end sequencing technology was conducted and analyzed. Equal quantities of total RNA isolated from six tissues, including gonad, hepatopancreas, foot, mantel, gill and adductor muscle, were pooled to construct a cDNA library. A total of 58.09 million clean reads with 98.48 % Q20 bases were generated. Cluster...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a thi...

متن کامل

Nucleotide sequence analysis of the Leptospira biflexa serovar patoc rpsL and rpsG genes.

The Leptospira biflexa rpsL and rpsG genes were sequenced. Although similar in many respects, proteins encoded by these L. biflexa genes had several unusual features when compared with homologous proteins of other organisms. Unlike the rpsL genes of other eubacteria, the L. biflexa rpsL gene is adjacent to a rpoC-like gene.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016